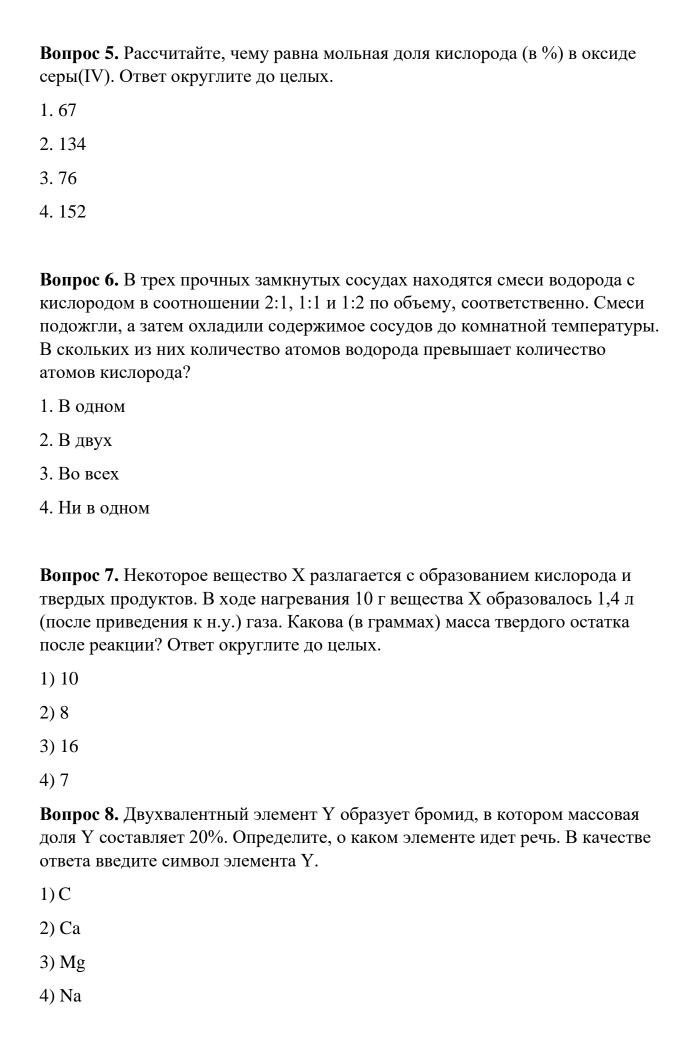
#### Химия 8 класс

# Тестовый раунд

# Вопрос 1. Методом дистилляции можно разделить на компоненты:

- 1. смесь железных и древесных опилок
- 2. смесь железных опилок и порошка серы
- 3. сплав железа с углеродом (чугун)
- 4. раствор уксуса в воде

**Вопрос 2.** Какова масса атомов кислорода, содержащихся в 0,75 моль оксида железа(III)? Ответ округлите до целых.


- 1.72
- 2.144
- 3.36
- 4.51

**Вопрос 3**. Сравните число атомов водорода, содержащихся при одинаковых условиях в 1 л водяных паров и в 1 л смеси равных объемов водорода и азота:

- 1. Больше атомов водорода содержится в 1 л смеси водорода и азота
- 2. Больше атомов водорода содержится в 1 л водяных паров
- 3. Число атомов водорода одинаково в обоих случаях
- 4. Невозможно определить без дополнительных справочных данных

**Вопрос 4.** В каком массовом соотношении необходимо смешать растворы изопропилового спирта с массовыми долями растворенного вещества 20% и 40%, чтобы получить 25%—й раствор?

- 1. 1:3
- 2. 1:2
- 3. 4:5
- 4. Среди предложенных вариантов нет правильного ответа.



# Вопрос 9. И с серной кислотой, и с гидроксидом натрия взаимодействует

- 1) оксид алюминия
- 2) оксид кальция
- 3) оксид серы(IV)
- 4) оксид углерода(IV)

**Вопрос 10.** В трех прочных замкнутых сосудах находятся смеси водорода с кислородом в соотношении 2:1, 1:1 и 1:2 по объему, соответственно. Смеси подожгли, а затем охладили содержимое сосудов до комнатной температуры. В скольких из них количество атомов кислорода превышает количество атомов водорода?

- 1. В одном
- 2. В двух
- 3. Во всех
- 4. Ни в одном

# Теоретический раунд

#### Задача 1

В природе известны два устойчивых изотопа водорода и три устойчивых изотопа кислорода. Сколько существует разных типов устойчивых молекул воды?

#### Задача 2

При растворении металла в избытке соляной кислоты выделилось 4,48 л газа (н. у.) и образовалось 17.8 г хлорида. Какой металл был взят?

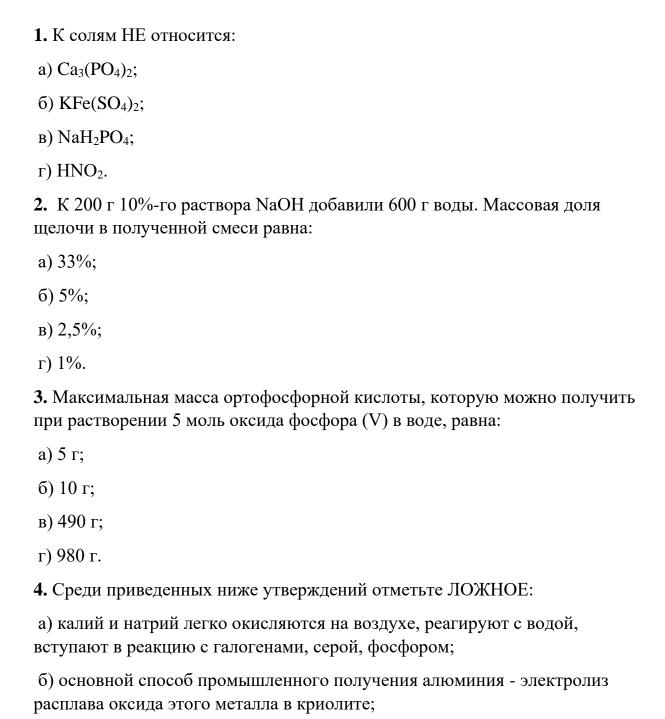
#### Задача 3

Неизвестное вещество реагирует с натрием, гидроксидом натрия, окисляется аммиачным раствором оксида серебра и хлором, применятся в фармацевтической и пищевой промышленности, в его молекуле содержится одинаковое количество атомов кислорода и водорода. Определите неизвестное вещество и запишите упомянутые реакции.

#### Задача 4

Чистую азотную кислоту (плотность 1,51 г/мл) объемом 500 мл аккуратно прилили к одному литру воды и получили раствор объемом 1380 мл. Рассчитайте массовую долю и молярную концентрацию  $HNO_3$  в этом растворе, а также плотность раствора.

#### Задача 5


Дано твердое вещество, после полного разложения которого, выделился газ и образовалась твердая смесь. Выделившийся газ занял 11,2 л, масса смеси составила 28 г, а масса исходного вещества 50 г. Необходимо рассчитать молярную массу (с точностью до целых) выделившегося газа.

#### Задача 6

Химический элемент Z образует соединения состава  $XZ_2$  и  $YZ_2$  с элементами X и Y – ближайшими соседями Z по периоду и по группе. Определите элементы X, Y, Z и напишите уравнение взаимодействия указанных соединений между собой.

#### Химия 9 класс

# Тестовый раунд



в) медь - малоактивный металл, однако реагирует при нагревании с

г) степень окисления +3 мало характерна для железа, поэтому окисление

кислородом и хлором, растворяется в (конц.) азотной кислоте;

 $Fe(OH)_2$  до  $Fe(OH)_3$  невозможно.

5. Аммиак окислили кислородом в присутствии катализатора, продукт реакции смешали с кислородом и пропустили через воду. Получили: а) гидроксид аммония; б) азотную кислоту; в) оксид азота (V); г) нитрат аммония. 6. Кислую реакцию среды имеет водный раствор: а) хлорида никеля (II); б) сульфата калия; в) карбоната калия; г) гидроксида бария. 7. Отметьте истинное утверждение: а) галогены легко взаимодействуют с неметаллами, особенно с кислородом, но не способны окислять металлы; б) сероводород - желтоватый газ без запаха, образуется при взаимодействии  $SO_2$  с водой; в) синтез аммиака из водорода и азота идет с хорошим выходом при комнатной температуре и нормальном атм. давлении; г) при нагревании смеси песка, мела и соды можно получить стекло. **8.** Обратимая реакция 2A(ras) + B(ras) = 2C(ras) является экзотермической. Равновесие данной реакции может быть смещено вправо при: а) повышении температуры; б) понижении давления; в) добавлении катализатора;

г) удалении С из реакционной смеси.

- 9. Для осуществления цепочки превращений азотная кислота нитрат аммония аммиак азот можно использовать следующие реагенты:
- а) медь NaOH оксид калия;
- б) магний  $Ca(OH)_2$  кислород;
- в) аммиак HCl оксид фосфора (V);
- г) железо гидроксид калия азот.
- **10.** Промышленный процесс производства серной кислоты обычно включает в себя следующие стадии:
- а) получение  $H_2S$ , окисление его бихроматом калия, действие щелочи на продукты реакции;
- б) синтез сульфата натрия, обработка полученной соли азотной кислотой;
- в) получение диоксида серы, окисление его до SO<sub>3</sub>, растворение полученного оксида в воде;
- г) нагревание пирита без доступа воздуха, резкое охлаждение полученной смеси.

# Теоретический раунд

#### Задача 1

Напишите реакции взаимодействия кристаллических хлорида калия и иодида калия с концентрированной серной кислотой. Сравнив эти реакции, определите, какой из галогенид-ионов проявляет более сильные восстановительные свойства.

#### Задача 2

37,6 г нитрата меди (II) прокалили до постоянной массы. Определите суммарный объём (в литрах) выделившихся газов (н.у.). В ответ запишите число, округлив его до десятых. (Атомную массу меди примите равной 64).

#### Задача 3

Горением называется реакция с самопроизвольным выделением тепла и света; при этом на 1 г смеси исходных веществ выделяется более 1,5 кДж тепла. При полном хлорировании 1 моль углерода выделяется 133 кДж, а при полном хлорировании 1 моль магния выделяется 645 кДж. Может ли гореть магний, залитый четыреххлористым углеродом — жидкостью, которую использовали для наполнения огнетушителей? Приведите уравнения возможных реакций и расчеты.

#### Задача 4

Предложите 3 примера солей разных кислот, каждая из которых разлагается при нагревании по схеме:

Агрегатные состояния указаны при комнатной температуре и атмосферном давлении. В каждом агрегатном состоянии может быть один или несколько продуктов.

#### Задача 5

Из приведенного списка выберите вещества, способные реагировать с водой при комнатной температуре:

Напишите уравнения возможных реакций.

#### Задача 6

Алюминиевый порошок смешали с серой и нагрели. Полученное вещество поместили в воду. Образовавшийся осадок разделили на две части. К одной части прилили соляную кислоту, к другой раствор гидроксида натрия до полного растворения осадка. Запишите уравнения перечисленных реакций.

#### Задача 7

В пронумерованных пробирках находятся растворы гидроксида натрия, серной кислоты, сульфата натрия и фенолфталеин. Как различить эти растворы, не пользуясь дополнительными реактивами?

#### Химия 10 класс

# Тестовый раунд

Вопрос 1. Возможная последовательность реакций отщепления:

- 1) 1,6-дихлоргексан  $\rightarrow$  циклогексан  $\rightarrow$  циклогексен
- 2) 2-хлорпропан  $\rightarrow$  пропен  $\rightarrow$  пропан
- 3) пентан  $\rightarrow$  бутан  $\rightarrow$  бутен
- 4) этан  $\rightarrow$  хлорэтан  $\rightarrow$  этилен

Вопрос 2. Циклогексан в одну стадию нельзя получить по реакции:

- 1)  $C_6H_{12}Cl_2 + 2Na \rightarrow C_6H_{12} + 2NaCl$
- 2)  $C_6H_6 + 3H_2 \rightarrow C_6H_{12}$
- 3)  $C_6H_{14} \rightarrow C_6H_{12} + H_2$
- 4)  $C_8H_{18} \longrightarrow C_6H_{12} + C_2H_6$

Вопрос 3. Отличить бутан от бутена можно:

- 1) по запаху
- 2) пронаблюдать за пламенем при горении
- 3) пропустить оба вещества через бромную воду
- 4) пропустить через вещества хлор при освещении

Вопрос 4. Правильная характеристика химических связей между атомами углерода и галогена в молекулах галогенопроизводных:

- 1) ковалентные, неполярные, по обменному механизму
- 2) ковалентные, полярные, одинарные
- 3) ионные, «напряженные» (т-связи), одинарные
- 4) ковалентные, полярные, кратные

Вопрос 5. Наибольшая молекулярная масса у радикала:

- 1) изопропил
- 2) пропил
- 3) метил
- 4) бутил

| Вопрос 6. Относительная плотность диметилциклопентана по аргону:                       |
|----------------------------------------------------------------------------------------|
| 1) 0,54                                                                                |
| 2) 1,54                                                                                |
| 3) 2,45                                                                                |
| 4) 3,54                                                                                |
| Вопрос 7. Верны ли следующие суждения?                                                 |
| А. Этиловый спирт и диметиловый эфир имеют одинаковую молекулярную формулу $C_2H_6O$ . |
| Б. Одинаковую молекулярную формулу $C_6H_{12}O_6$ имеют и глюкоза, и сахароза.         |
| 1) верно только А                                                                      |
| 2) верно только Б                                                                      |
| 3) верны оба суждения                                                                  |
| 4) оба суждения неверны                                                                |
| Вопрос 8. Верны ли следующие суждения?                                                 |
| А. Органические вещества имеют, как правило, высокие температуры плавления.            |
| Б. Органические вещества имеют, как правило, молекулярную кристаллическую решетку.     |
| 1) верно только А                                                                      |
| 2) верно только Б                                                                      |
| 3) верны оба суждения                                                                  |
| 4) оба суждения неверны                                                                |
| Вопрос 9. К кетонам относится:                                                         |

1) бензол

2) ацетон

3) этаналь

4) метиламин

**Вопрос 10.** Имеются следующие кислоты: уксусная (1), хлоруксусная (2), трифторуксусная (3), масляная (4). Расположите данные вещества в ряд по увеличению их кислотных свойств:

- 1) 1-2-3-4;
- 2) 4-3-2-1;
- 3) 4-1-2-3;
- 4) 1-4-3-2.

# Теоретический раунд

#### Задача 1.

#### Условие задачи:

Смесь пропана, пропена и пропина способна присоединить 13,44 л водорода (н.у.) в присутствии катализатора. При пропускании данной смеси в аммиачный раствор оксида серебра образуется 14,7 г осадка. Плотность исходной смеси по водороду составляет 21,25.

- 1. Определите состав смеси процентах по объему.
- 2. Могут ли компоненты смеси взаимодействовать с водой и, если да, то в каких условиях?

#### Задача 2.

#### Условие задачи:

Кристаллическое вещество А, отличающееся высокой твердостью соединение двух элементов, нерастворимое в кислотах, растворяется только в смеси азотной и фтористоводородной кислот при нагревании. При упаривании полученного раствора он полностью испаряется, не оставляя твердых продуктов. При сплавлении вещества А с избытком гидроксида натрия в присутствии кислорода с последующим растворением продуктов в воде получен раствор, при подкислении которого наблюдается одновременно выделение газа и образование осадка. Напишите уравнения упомянутых реакций.

#### Задача 3.

#### Условие задачи:

Смесь этана и этилена пропустили в темноте через склянку с бромной водой, при этом масса склянки увеличилась на 1,4 г. Определите содержание компонентов в исходной смеси, если известно, что при сжигании газа, прошедшего через склянку, образовалось 4,48 л СО2 (н.у.) и 4,5 мл воды.

#### Задача 4.

#### Условие задачи:

После пропускания смеси трех газов, имеющей плотность по водороду 25, через подкисленный раствор перманганата калия, ее объем уменьшился вдвое, а плотность по водороду снизилась до 18. Если же пропустить исходную смесь через щелочной раствор перманганата калия, то её объем уменьшается в четыре раза, а плотность по водороду снижается до 14. Каким может быть качественный и количественный состав исходной газовой смеси, если известно, что продукты ее сгорания в кислороде полностью поглощаются раствором щелочи?

#### Задача 5.

#### Условие задачи:

При разложении озона, находящегося в смеси с кислородом, объем смеси увеличивается на 17,5 % при том же давлении и той же температуре. Определите максимальную массу йода, которая может образоваться, при быстром пропускании 300 мл исходной смеси через подкисленный раствор иодида калия.

#### Задача 6.

#### Условие задачи:

В пяти сосудах без этикеток находятся водные растворы гидроксида калия, сульфата алюминия, карбоната натрия, хлорида аммония и соляной кислоты. Предложите план определения содержимого каждого сосуда за счет проведения реакций указанных веществ между собой без использования дополнительных реактивов. В вашем распоряжении имеется любое количество чистых пробирок. Напишите уравнения реакций.

# Задача 7.

# Условие задачи:

В вашем распоряжении имеются металлы: цинк, медь и железо, а также 30%-я соляная кислота, 30%-я азотная кислота и водные растворы гидроксида натрия и хлорида железа(III). Напишите уравнения возможных реакций растворения данных металлов в данных жидкостях.

#### Химия 11 класс

# Тестовый раунд

Вопрос 1. Для четырех солей перечислены продукты электролиза их водных растворов. Какой из приведенных вариантов ответа является ошибочным:

- a)  $Na_2SO_4 = H_2 + O_2$
- б)  $KBr = KOH + H_2 + Br_2$ ,
- B)  $CuSO_4 = Cu + H_2SO_4 + O_2$ ,
- $\Gamma$ ) FeBr<sub>3</sub> = Fe + HBr + O<sub>2</sub>

# Вопрос 2. Отметьте истинное утверждение:

- а) при термическом разложении нитрата меди образуется оксид меди (II) и пентаоксид диазота,
- б) при нагревании бихромата аммония получают  $Cr_2O_3$ ,  $NH_3$  и  $H_2O$ ,
- в) продукты термического разложения нитрата аммония  $-N_2O$  и вода, а нитрита аммония  $-N_2$  и вода,
- г) кислород может быть получен при нагревании перманганата калия либо нитрата железа (III).

# Вопрос 3. Степень диссоциации слабого основания:

- а) зависит только от природы самого основания,
- б) зависит от температуры и давления, но не зависит от концентрации раствора,
- в) целиком определяется природой растворителя,
- г) зависит от температуры, концентрации основания, природы растворителя.

**Вопрос 4.** Стандартная молярная энтальпия образования метана = -74 КДж/моль, стандартная энтальпия образования хлороформа = -135 КДж/моль, а стандартная энтальпия образования хлороводорода = -92 КДж/моль. Стандартная теплота реакции  $CH4(\Gamma) + 3Cl2(\Gamma) = CHCl3(\pi) + 3HCl(\Gamma)$  равна:

- а) 337 КДж,
- б) 153 КДж,
- в)  $-153 \ KДж,$
- г) 451 КДж.

**Bonpoc 5.** Отметьте вариант, в котором перечислены только соли, водные растворы которых имеют щелочную среду:

- а) карбонат натрия, силикат калия, ортофосфат калия,
- б) нитрат железа (III), гидрокарбонат калия, сульфат меди,
- в) хлорид хрома, сульфид натрия, ацетат бария,
- г) нитрат меди (II), бромид железа (III), сульфат кобальта (II).

## Вопрос 6. Отметьте ложное утверждение:

- а) кальций реагирует с водой с выделением водорода, взаимодействует с хлором, серой, кислородом,
- б) магний горит в атмосфере кислорода, но не взаимодействует с серной и соляной кислотами,
- в) Na легко вступает в реакцию с большинством неметаллов, но не реагирует с метаном,
- г) прочная оксидная пленка на поверхности Al надежно предохраняет металл от дальнейшего окисления.

**Вопрос 7.**  $2SO_2 + O_2 = 2SO_3 + 300$  Кдж. Равновесие данной реакции сместится вправо при:

- а) повышении температуры,
- б) добавлении катализатора,
- в) уменьшении концентраций реагирующих веществ,
- г) повышении давления.

## Вопрос 8. Какое из приведенных ниже утверждений справедливо:

- а) галогены типичные представители металлов,
- б) кислотные свойства усиливаются в ряду  $MgO Al_2O_3 P_2O_5 SO_3$ ,
- в) высший оксид кремния имеет формулу Si2O5,
- г) среди d-элементов встречается много неметаллов

## Вопрос 9. 10%-й раствор нитрата калия в воде может быть получен при:

- а) добавлении воды к 5%-му раствору КNO<sub>3</sub>,
- б) растворении 10 г нитрата калия в 100 г воды,
- в) растворении 10 г КNО3 в 90 г воды,
- г) смешении 10 г нитрата калия и 10 г  $H_2O$ .

# Вопрос 10. Смесь поваренной соли, железных опилок и порошкообразной серы можно разделить следующим образом:

- а) нагреть (при этом испаряется соль) и добавить HCl (растворится сера);
- б) магнитом отделить железные опилки, растворить в воде, профильтровать, фильтрат выпарить;
- в) обработать спиртом, остаток высушить и нагреть до 1000 °C;
- г) выдержать 2 недели разделится сама собой

# Теоретический раунд

#### Задача 1.

#### Условие задачи:

Два бесцветных газа с резким запахом реагируют друг с другом при нагревании в присутствии следов влаги, давая смесь двух твердых простых веществ и воду (других продуктов реакции нет). Определите, о каких веществах идет речь в задаче, если известно, что из стехиометрической смеси газов объемом 5,00 л (приведено к н.у.) образуется 24,1 г смеси твердых веществ и 1,61 г воды.

#### Задача 2.

#### Условие задачи:

Чёрный оксид А реагирует со щелочным раствором вещества Б зелёного цвета с образованием жёлтого раствора. Подкисление полученного раствора избытком уксусной кислоты приводит к выпадению жёлтого осадка, масса которого составляет 90% от массы прореагировавшего вещества А. Найдите вещества и напишите уравнения реакций.

#### Задача 3.

#### Условие задачи:

Простое газообразное вещество Н является достаточно недорогим и широко применяется промышленности И лабораториях. Для химических экспериментов иногда требуется Н высокой чистоты. Для очистки газ Н перед использованием последовательно пропускают через две трубки. Первая трубка заполнена молекулярными ситами (пористый алюмосиликат), пропитанными сплавом натрия и калия. Вторая трубка заполнена кусочками слюды с нанесенным на нее оксидом марганца (II). В особых случаях, для дополнительной очистки газа Н можно использовать трубку с раскаленной титановой губкой. Что представляет собой газ Н и для чего его применяют? Какие процессы проходят в трубках? Запишите уравнения реакций, протекающих в каждой трубке. Почему третью трубку используют только в особых случаях?

#### Задача 4

#### Условие задачи:

С помощью расчетов и рассуждений оцените, сколько тепла выделится при образовании 1 моль йодоводорода по реакции:

 $H_2(\Gamma) + I_2(\kappa) = 2HI(ж)$ , если известно, что:

- 1)  $BaI_2(ж) + Cl_2(г) = BaCl_2(ж) + I_2(к) + 224 кДж$
- 2)  $H_2(\Gamma) + Cl_2(\Gamma) = 2HCl(ж) + 334 кДж$
- 3)  $Ba(OH)_2(ж) + 2HCl(ж) = BaCl_2(ж) + 2H_2O(ж) + 112 кДж$

# Задача 5.

#### Условие задачи:

Газ, выделившийся при взаимодействии цинка с соляной кислотой, смешали с хлором и взорвали. Полученный при этом газообразный продукт растворили в воде и подействовали им на диоксид марганца. Образовавшийся газ пропустили через горячий раствор гидроксида калия. Запишите уравнения перечисленных реакций.

#### Задача 6.

#### Условие задачи:

В четырех пронумерованных пробирках находятся сухие оксид меди (II), сажа, хлорид натрия и хлорид бария. Как, пользуясь минимальным количеством реактивов, определить, в какой из пробирок находится какое вещество? Ответ обоснуйте и подтвердите уравнениями соответствующих химических реакций.

#### Задача 7.

#### Условие задачи:

Какие из перечисленных ниже веществ реагируют с  $KMnO_4$ : HC1,  $K_2SO_3$ ,  $CO_2$ ,  $KNO_3$ ,  $CH_2$ =CH- $CH_3$ ,  $C_6H_5CH_3$ ? Напишите уравнения всех возможных реакций и укажите условия их протекания.