#### 7-8 класс.

#### Задание 7-8-1

Названия некоторых химических элементов входят в состав часто употребляемых словосочетаний. Определите эти элементы и напишите их символы вместо многоточия:

а) ... солдатик;

б) ... леди;

в) ... лихорадка;

г) ... долина;

д) ... тучи;

е) ... дровосек;

ж) ... бомба;

з) ... лампа;

и) ... голодание;

к) ... муки.

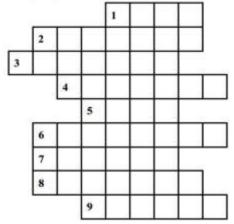
Количество баллов - 10

### Задание 7-8-2

Садовод Геннадий собрал большой урожай огурцов и приступил к их маринованию. Согласно рецепту, для приготовления 3 литров маринада требуется 1 стакан 9%-уксуса. К сожалению, у Геннадия оказалась лишь уксусная эссенция с концентрацией уксусной кислоты 70%. Помогите Геннадию рассчитать, сколько чайных ложек уксусной эссенции потребуется для приготовления 3 литров маринада. При расчетах примите плотности всех растворов равными 1 г/мл, объем стакана 200 мл, а чайной ложки – 5 мл.

Количество баллов – 10

## <u>Задание 7-8-3</u>


В ювелирном деле традиционно используют драгоценные камни, например, рубин и сапфир. Эти камни отличаются прочностью, прозрачностью и яркостью окраски. Рубин — драгоценный камень красного, сапфир — синего цвета. Красную окраску рубину придаёт примесь хрома. Красные корунды называются рубинами, синие - сапфирами. Но не все знают, что цвет этих камней зависит только от примесей, а основной химический состав у них одинаков. Основное вещество этих драгоценных камней содержит 52,94% алюминия и 47,06% кислорода, а относительная молекулярная масса вещества больше относительной молекулярной массы водорода в 51 раз.

- 1. Определите формулу этого вещества.
- 2. Какое это вещество простое или сложное? Ответ объясните.
- 3. Напишите известные Вам области применения алюминия.
- 4. Сколько электронов содержится на внешнем энергетическом уровне атома алюминия?

Количество баллов – 7

# <u>Задание</u> 7-8-4.

Если Вы смотрите на окружающий мир не только с позиции потребителя, а еще и задаетесь вопросом, как он устроен, то легко справитесь с большей частью этого задания. В приведенном кроссворде по горизонтали зашифрованы названия простых веществ и химических элементов, а в одном из столбцов по вертикали — некое слово, имеющее непосредственное отношение ко всем этим элементам.



Разгадайте все названия и ключевое слово и объясните, как оно связано с этими элементами.

- 1. Из этого металла сделаны электрические провода, делающие Вашу жизнь ярче и светлее. А соединения этого элемента «отвечают» за то, чтобы Ваша жизнь была теплее!
  - 2. С оксидом этого элемента Вы часто играли еще в глубоком детстве. А если летом ходили купаться на пляж, то обязательно видели там его неисчерпаемые запасы.
  - 5. Что характерно, на том же пляже Вы видели не меньшие запасы и этого вещества. А без него жизни нет вообще!
  - 6. Запах оксида этого элемента Вы ощущаете всякий раз, когда зажигаете обыкновенную спичку.
  - 8. Это простое вещество необходимо нам просто как воздух!

А точнее, воздух без него нам и вовсе не нужен.

- 7. Порывшись в карманах или сумочке, Вы почти наверняка обнаружите изделия из этого металла целиком, или содержащие его в составе сплава.
- 8. А вот изделия из этого металла по карману уже не каждому! Правда, на большей части девушек что-нибудь эдакое все же и найдется.
- 9. Иногда кажется, что этого тяжелого металла лучше бы и не было вовсе. Ядовитая типографская краска, присадка к бензинам, уродующая экологию, пули и снаряды вот неполный перечень его «заслуг» перед человечеством. Но ведь есть еще автомобильные аккумуляторы, оплетки силовых кабелей, тяжелые и легкоплавкие сплавы, защита от рентгеновского излучения и т.д.

  Количество баллов 11

### Задание 7-8-5.

Азот образует с кислородом пять оксидов. Массовые доли азота в них соответственно равны: 63,6%; 46,7%; 30,4%; 36,8%; 25,9%. Определите формулы оксидов. Количество баллов – 5

### 9 класс.

#### Задание 9-1.

Используя только раствор щёлочи, сульфат меди, цинковую пластинку и продукты превращения этих веществ, проведите 4 типа реакций: присоединения, разложения, обмена и замещения. Проиллюстрируйте ответ соответствующими уравнениями реакций. Количество баллов - 8 Задача 9-2.

Через раствор массой 50 г с массовой долей иодида натрия 15 % пропустили избыток хлора. Выделился йод массой 5,6 г. Определите выход продукта реакции. Количество баллов - 6 Задание 9-3.

Методом электронного баланса подберите коэффициенты в схеме окислительно-восстановительной реакции, укажите окислитель и восстановитель:

 $H_2S + K_2Cr_2O_7 + H_2SO_4 \rightarrow S + Cr_2(SO_4)_3 + K_2SO_4 + H_2O_4$ 

Количество баллов – 4

<u>Зада</u>ча 9-4.

Винни-Пух и Пятачок не нашли в лаборатории банку с поваренной солью и решили получить ее химическим путем, используя склянки с растворами веществ, хранящимися на полке в школьном кабинете химии. Внимательно прочитав учебник, им удалось получить чистую поваренную соль пятью различными способами. А вот записать уравнения реакций наши герои не смогли. Количество баллов – 10 Помогите им.

Задача 9-5.

В каком объёме воды необходимо растворить хлороводород, образующийся при слабом нагревании 234 г хлорида натрия с концентрированным раствором серной кислоты, чтобы получить 20% раствор соляной кислоты? Количество баллов – 7

### 10 класс.

#### Задание 10-1.

В периодической системе есть девять элементов, названия которых в русском языке являются существительными «не мужского рода». Для каждого их этих элементов ниже приведены характерные реакции, в которых они зашифрованы буквой «Э». Определите элементы для каждой реакции:

- 1)  $2H_2$ **3** +  $3O_2 \rightarrow 3$ **3** +  $2H_2O$ ;
- 2)  $2\mathbf{3}Cl_3 + 2KI \rightarrow 2\mathbf{3}Cl_2 + 2KCI + l_2$
- 3)  $3NO_3 + KCI \rightarrow 3CI + KNO_3$ :
- 4) **3** + 3HNO<sub>3конц.</sub> + 4HCI<sub>конц.</sub>  $\rightarrow$  H[**3**Cl<sub>4</sub>] + 3NO<sub>2</sub> +3H<sub>2</sub>O;
- 5) **Э**Cl<sub>2</sub> + 4NH<sub>3</sub> → [**Э**(NH<sub>3</sub>)<sub>4</sub>]Cl<sub>2</sub> (синий);
- 6)  $3Cl_2 + Cl_2 \rightarrow 3Cl_4$ ;
- $\mathbf{3}_{2}O_{3} + 4HNO_{3(конц.)} + (x-2) H_{2}O \xrightarrow{\mathbf{3} \text{ (катализатор)}, 800°C} \mathbf{3}_{2}O_{5} \cdot x H_{2}O + 4NO_{2};$
- 8)  $4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O$ ;
- 9)  $2\mathbf{3} + O_2 \rightarrow 2\mathbf{3} O$ ;  $2\mathbf{3} O \rightarrow 2\mathbf{3} + O_2$ .

Количество баллов - 10

9

4

7

2

5

8

3

6

9

## <u>Задание</u> 10-2

В математике магический квадрат – это таблица размерностью NxN, заполненная целыми числами так, чтобы суммы по всем столбцам и строкам, а также по обеим диагоналям были равны между собой. Предлагаем Вам заполнить магический квадрат размерностью 3х3. Для этого расставьте методом электронного баланса коэффициенты в следующих химических уравнениях:

| 2  | 7  | 6  | 15 |
|----|----|----|----|
| 9  | 5  | 7  | 15 |
| 4  | 3  | 8  | 15 |
| 15 | 15 | 15 | 15 |

- 1.  $KIO_3 + H_2O_2 \rightarrow KI + O_2 + H_2O$
- 2. (VO)SO<sub>4</sub> + KMnO<sub>4</sub> + H<sub>2</sub>O  $\xrightarrow{\text{Кипячение}}$  V<sub>2</sub>O<sub>5</sub> + MnSO<sub>4</sub> + H<sub>2</sub>SO<sub>4</sub> + K<sub>2</sub>SO<sub>4</sub>

- 3. Zn + HNO<sub>3</sub> (разб.,гор.)  $\rightarrow$  Zn(NO<sub>3</sub>)<sub>2</sub> + N<sub>2</sub>O + H<sub>2</sub>O 4. K<sub>2</sub>S<sub>2</sub>O<sub>8</sub> + KOH + I<sub>2</sub>  $\xrightarrow{\text{Кипячение}}$  K<sub>2</sub>SO<sub>4</sub> + KIO<sub>3</sub> + H<sub>2</sub>O 5. P<sub>кр</sub> + KMnO<sub>4</sub> + H<sub>2</sub>O  $\xrightarrow{\text{Кипячение}}$  K<sub>2</sub>H<sub>2</sub>P<sub>2</sub>O<sub>6</sub> + MnO<sub>2</sub> + KOH
- 6. Sn + NaOH +  $H_2O \rightarrow Na_2[Sn(OH)_6] + H_2$

7.  $H_2SeO_4 + HCI + Au \xrightarrow{Kuпячение} SeO_2 + H[AuCl_4] + H_2O$ 

- 8. KNO<sub>2 (TB.)</sub> + H<sub>2</sub>SO<sub>4</sub> + FeSO<sub>4 (TB.)</sub>  $\rightarrow$  NO + Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> + K<sub>2</sub>SO<sub>4</sub> + H<sub>2</sub>O
- 9.  $Ca_3(PO_4)_2 + C_{(KOKC)} + SiO_2 \rightarrow CaSiO_3 + P_4 + CO$  (при 1000°C)

Полученную сумму коэффициентов впишите в соответствующие ячейки магического квадрата в соответствии со схемой. Не забудьте указать сумму чисел этого квадрата, то есть сумму любой строки, столбца или диагонали. Количество баллов - 10

## Задание 10-3.

В 1928 году американскому химику корпорации «Дженерал Моторс» («General Motors Research») Томасу Мидглей младшему удалось синтезировать и выделить в своей лаборатории химическое соединение, состоявшее на 23,53% из углерода,1,96% водорода и 74,51% фтора. Полученный газ был в 3,52 раза тяжелее воздуха и не горел. Выведите формулу соединения, напишите структурные формулы органических веществ, соответствующих полученной молекулярной формуле, дайте им названия по номенклатуре ИЮПАК. Где применяются в наше время подобные соединения?

Количество баллов – 10

Задание 10-4.

В пяти пробирках находятся растворы гидроксида кальция, соляной кислоты, карбоната натрия, нитратов аммония и серебра. Предложите способ определения содержимого каждой пробирки, не прибегая к использованию других реактивов. Напишите уравнения протекающих реакций.

| пе приостая к использе                        | ванию других реактивов.                                             | <b>5</b> .                                | оличество баллов – 18                             |
|-----------------------------------------------|---------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------|
| <u>Задание 10-5.</u>                          |                                                                     | N.                                        | TO ADDITION OF THE PRINCE                         |
| 1) Наибольшую молеку                          | AUDUNIO MACCA NMEET                                                 |                                           |                                                   |
| A) CH <sub>3</sub> Cl                         | Б) C <sub>2</sub> H <sub>6</sub>                                    | B) CH <sub>2</sub> Cl <sub>2</sub>        | Γ) CCl <sub>4</sub>                               |
| 2) Трёхэлементное вец                         | ,                                                                   | B) Cl 12012                               | 1) CO14                                           |
| A) C <sub>2</sub> H <sub>3</sub> OH           | Б) C <sub>2</sub> H <sub>6</sub>                                    | B) CH <sub>3</sub> NO <sub>2</sub>        | Γ) CH <sub>2</sub> (NH <sub>2</sub> )COOH         |
| •                                             | гов в молекулярном урав                                             | •                                         |                                                   |
| A) 10                                         | Б) 11                                                               | B) 12                                     | Γ) 13                                             |
| ,                                             | а (моль), содержащееся                                              | ,                                         | 1) 13                                             |
| A) 0,5                                        | Б) 0,3                                                              | B) 0,03                                   | Γ) 0,15                                           |
|                                               | :H₂COOH, в которой соде                                             |                                           |                                                   |
| А) 74 г                                       | Б) 148 г                                                            | В) 14,8 г                                 | Г) 12,3 г                                         |
| ,                                             | йтронов в ядре изотопа <sup>4</sup>                                 |                                           | 1 / 12,01                                         |
|                                               | Б) $p = 40$ , $n = 19$ ;                                            |                                           | $\Gamma$ ) p = 21, n = 19                         |
|                                               | массовая доля элемента                                              |                                           | , ,                                               |
| <ul><li>A) фосфор</li></ul>                   | Б) хлор                                                             | В) азот                                   | Г) бром                                           |
|                                               | а массой 1,26 г, занимаю                                            |                                           | , ,                                               |
| A) 44                                         | Б) 28                                                               | В) 32                                     | Γ) 42                                             |
| ,                                             | в, соответствующих моле                                             | ,                                         | ,                                                 |
| A) 2                                          | Б) 3                                                                | В) 4                                      | Г) 5                                              |
| •                                             | еского строения органиче                                            | ,                                         | . , 3                                             |
| А) Ф.А. Кекуле                                | Б) Ф. Вёллер                                                        | В) А.М. Бутлеров                          | Г) М.В. Ломоносов                                 |
| , .,                                          |                                                                     |                                           | оличество баллов – 10                             |
| 11 класс.                                     | XX                                                                  |                                           |                                                   |
| <u>Задание 11-1.</u>                          |                                                                     |                                           |                                                   |
|                                               | ипина и бензопа встрях                                              | нупи с волным раство                      | ром щелочи, масса смеси                           |
|                                               |                                                                     |                                           | ее масса уменьшилась на                           |
|                                               | овую долю компонентов в                                             |                                           |                                                   |
| Задание 11-2. Тест (1 в                       |                                                                     |                                           |                                                   |
|                                               |                                                                     | ат кальция. нитрат кал                    | ия, хлорид натрия и про-                          |
| 1 1 1                                         |                                                                     |                                           | і из чашек находятся взя-                         |
| тые соли, если:                               | , ,                                                                 | ,                                         |                                                   |
| 1) изменится цвет со                          | лей:                                                                |                                           |                                                   |
| 2) появится запах;                            | ,                                                                   |                                           |                                                   |
|                                               | існет тлеющая лучинка, г                                            | однесенная поочередн                      | ю к каждой соли.                                  |
|                                               | ı оксида хрома (VI) с избы                                          | -                                         |                                                   |
|                                               | a <sub>2</sub> CrO <sub>2</sub> 3) Na <sub>2</sub> CrO <sub>3</sub> |                                           | 5) Na <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub> |
| •                                             | гирует по отдельности в                                             | растворе с веществами                     | /<br>/:                                           |
| 1) SiO <sub>2</sub> , CaO, Na <sub>2</sub> CO | • •                                                                 | 3) K <sub>2</sub> SiO <sub>3</sub> , P, B |                                                   |
| 2) SO <sub>2</sub> , CuO, Zn                  |                                                                     | 4) NaCl, KOH,                             | ZnO                                               |
| 4. Основные свойства                          | анилина повышаются при                                              | 1:                                        |                                                   |
| 1) замене атомов во                           | одорода в аминогруппе на                                            | а фенильные радикалы                      | I                                                 |
| 2) замене атомов во                           | одорода в аминогруппе на                                            | а метильные группы                        |                                                   |

3) замене атома водорода в n-положении на нитрогруппу

4) при замене атомов водорода в о- и n-положениях на нитрогруппы

- 5. Для полного перевода в раствор образца сплава следует использовать разбавленный раствор кислоты
  - 1) соляной
- 2) серной
- 3) азотной
- 4) уксусной
- 6. По заместительной номенклатуре ИЮПАК правильное название соединения, имеющего строение HOCH<sub>2</sub> CH<sub>2</sub>COOH.
  - 1) 3-гидроксипропановая кислота
  - 2) 2-гидрокси-1-карбоксиэтан
  - 3) 2-карбоксиэтанол
  - 4) 3-гидроксипропионовая кислота
- 7. Диэтиловый эфир из ацетальдегида можно получить последовательным действием веществ:
  - 1) кислорода (катализатор); натрий
  - 2) водорода (катализатор); концентрированной серной кислотой (t=1300)
  - 3) водорода (катализатор); концентрированной серной кислотой (t =180°)
  - 4) воды; этилового спирта
- 8. Аммиак в лаборатории получают:
  - а) кипячением нашатырного спирта
  - б) термическим разложением нитрита аммония
  - в) прокаливанием нитрата аммония
  - г) нагреванием смеси хлорида аммония и гидроксида калия
  - д) обработкой нитрида магния горячей водой
  - 1) б, г, д
- 2) б, в, г
- 4) а, б, в
- 9. Относительная плотность алкена по водороду равна 14. Число атомов водорода, содержащееся в 6,72 л этого вещества:
  - 1)  $3.10^{23}$
- 2)  $3.6 \cdot 10^{23}$
- 3) 6·10<sup>23</sup>

10. Сумма коэффициентов в молекулярном уравнении окислительно-восстановительной реакции, схема которой дана

$$C_6H_5CH_3 + KMnO_4 + H_2SO_4 \rightarrow C_6H_5COOH + MnSO_4 + K_2SO_4 + H_2O_4$$
 2) 28 3) 48 4) 50 **Количесте**

1) 20

Количество баллов – 10

# Задача № 11-3

Соединение Х является важным продуктом крупнотоннажной химической промышленности — в настоящее время его мировое производство составляет более 8 млн.т. в год. Первое промышленное производство Х в СССР было основано на использовании реакции С.В. Лебедева, для чего пары соединения А пропускают над нагретой смесью оксидов цинка и магния. Германия, в отличие от СССР, не располагала ни источниками нефти, ни богатыми ресурсами растительного сырья, поэтому соединение **X** в то время получали из карбида кальция. В настоящее время **X** в промышленности получают каталитическим дегидрированием предельного углеводорода Е. Все упомянутые выше способы получения приведены на схеме.

$$A \xrightarrow{ZnO, MgO}$$
 $A \xrightarrow{400-500^{\circ}C} \xrightarrow{400-500^{\circ}C} \xrightarrow{Coedunenue} \xrightarrow{Cr_2O_3, Al_2O_3} \xrightarrow{E}$ 
 $CaC_2 \xrightarrow{H_2O} \xrightarrow{B} \xrightarrow{H_2O} \xrightarrow{H_2O} \xrightarrow{B} \xrightarrow{NaOH} \xrightarrow{BOJH. p-p} \xrightarrow{Pd} \xrightarrow{A} \xrightarrow{Al_2O_3} \xrightarrow{ZnO, MgO} \xrightarrow{X} \xrightarrow{600-650^{\circ}C} \xrightarrow{E}$ 

Запишите уравнения химических реакций и названия соединений А-Е и Х.

## Количество баллов – 12

### Задание 11-4.

Неизвестный алкен объемом 4,032 л (н.у.) при окислении водным раствором перманганата калия образует 13,68 г двухатомного спирта. Выведите структурную формулу спирта. (5 баллов). <u>Задание 11-5.</u>

Пластинку из неизвестного двухвалентного металла массой 100 г опустили в раствор хлорида золота (III) массой 219,9 г. Через некоторое время пластинку вынули, высушили и взвесили. Ее масса оказалась равной 119,9 г. В растворе же появился хлорид двухвалентного металла, массовая доля хлорида составила 20,4%. Из какого металла сделана пластинка?

Количество баллов – 10